05
05
05
iHaus Lassie
iHaus Lassie
iHaus Lassie
Smart Detection and Emergency Response for Independent Elderly Living
Smart Detection and Emergency Response for Independent Elderly Living
Smart Detection and Emergency Response for Independent Elderly Living



Description
Description
iHaus Lassie integrates IoT sensor networks with machine learning–based anomaly detection to safeguard solitary seniors, automatically triggering emergency calls through the German Red Cross upon detecting critical events such as falls.
iHaus Lassie 利用物联网传感器和基于机器学习的异常监测技术,为独居老人提供安全保障,一旦侦测到如跌倒等紧急情况便可通过德国红十字会自动触发报警呼救。
iHaus Lassie integrates IoT sensor networks with machine learning–based anomaly detection to safeguard solitary seniors, automatically triggering emergency calls through the German Red Cross upon detecting critical events such as falls.
iHaus Lassie 利用物联网传感器和基于机器学习的异常监测技术,为独居老人提供安全保障,一旦侦测到如跌倒等紧急情况便可通过德国红十字会自动触发报警呼救。
Keywords
Keywords
Applied Software Engineering
Applied Software Engineering
Machine Learning
Machine Learning
IoT Healthcare
IoT Healthcare
Ubiquitous Computing
Year
Year
2019
2019






Technical Details
Technical Details
As part of the competitive iPraktikum program at the Technical University of Munich, iHaus Lassie leverages iHaus AG’s extensive IoT sensor data to build a robust health risk monitoring platform. By processing more than 200,000 data points through a custom-built machine learning pipeline, the system detects unusual patterns—such as sudden inactivity or falls—and automatically connects to an emergency call center operated by the German Red Cross (DRK). The cross-platform solution includes a fully developed iOS application (with Apple Watch integration) and leverages a hierarchical data authorization framework to ensure patient confidentiality. Over 500 tasks were meticulously tracked via Jira and deployed using Bitbucket CI/CD, demonstrating a rigorous, scalable software engineering approach that unites industrial design, data science, and user-centered research for proactive elderly care.
iHaus Lassie 于慕尼黑工业大学的 iPraktikum 项目中研发,依托 iHaus AG 的物联网传感器网络,构建了完备的健康风险监测平台。通过处理超过 20 万条传感器数据,并结合自研的机器学习流程,该系统可识别异常模式,例如突发性静止或跌倒,一旦确认,即可通过与德国红十字会(DRK)连接的紧急呼叫中心第一时间报警。项目完整实现了 iOS 应用与 Apple Watch 集成,并采用分级数据授权机制保障用户隐私。整个开发过程管理了 500 多个任务,使用 Jira 进行追踪与 Bitbucket CI/CD 持续交付,充分体现了高水准的软件工程、数据科学和以用户为中心的设计方法在老年人预防性护理中的融合与应用。
As part of the competitive iPraktikum program at the Technical University of Munich, iHaus Lassie leverages iHaus AG’s extensive IoT sensor data to build a robust health risk monitoring platform. By processing more than 200,000 data points through a custom-built machine learning pipeline, the system detects unusual patterns—such as sudden inactivity or falls—and automatically connects to an emergency call center operated by the German Red Cross (DRK). The cross-platform solution includes a fully developed iOS application (with Apple Watch integration) and leverages a hierarchical data authorization framework to ensure patient confidentiality. Over 500 tasks were meticulously tracked via Jira and deployed using Bitbucket CI/CD, demonstrating a rigorous, scalable software engineering approach that unites industrial design, data science, and user-centered research for proactive elderly care.
iHaus Lassie 于慕尼黑工业大学的 iPraktikum 项目中研发,依托 iHaus AG 的物联网传感器网络,构建了完备的健康风险监测平台。通过处理超过 20 万条传感器数据,并结合自研的机器学习流程,该系统可识别异常模式,例如突发性静止或跌倒,一旦确认,即可通过与德国红十字会(DRK)连接的紧急呼叫中心第一时间报警。项目完整实现了 iOS 应用与 Apple Watch 集成,并采用分级数据授权机制保障用户隐私。整个开发过程管理了 500 多个任务,使用 Jira 进行追踪与 Bitbucket CI/CD 持续交付,充分体现了高水准的软件工程、数据科学和以用户为中心的设计方法在老年人预防性护理中的融合与应用。



Highlights
Highlights
In 2016, nearly 50% of individuals over 75 who experienced home accidents did not survive; iHaus Lassie seeks to reverse this trend through real-time monitoring and swift emergency responses.
The project integrates design and technology to empower independent living for the elderly, enhancing both safety and peace of mind.
2016 年,约有 50% 的 75 岁以上老人在家中意外事故后不幸离世;iHaus Lassie 致力于通过实时监控和迅速响应来改写这一数据。
项目将设计与技术深度融合,为独居老人提供更安全、更安心的独立生活环境。
In 2016, nearly 50% of individuals over 75 who experienced home accidents did not survive; iHaus Lassie seeks to reverse this trend through real-time monitoring and swift emergency responses.
The project integrates design and technology to empower independent living for the elderly, enhancing both safety and peace of mind.
2016 年,约有 50% 的 75 岁以上老人在家中意外事故后不幸离世;iHaus Lassie 致力于通过实时监控和迅速响应来改写这一数据。
项目将设计与技术深度融合,为独居老人提供更安全、更安心的独立生活环境。
Credits
Program
iPraktikum program 2019
Chair for Applied Software (LS1),TUM
Customer
iHaus AG, German Red Cross (DRK)
Appendix
Credits
Program
iPraktikum program 2019
Chair for Applied Software (LS1),TUM
Customer
iHaus AG, German Red Cross (DRK)
Appendix
More works